This article was downloaded by: On: *21 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymer Analysis and Characterization

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646643

¹³C NMR and Raman Studies of Fullerene-Based Poly(Methyl

Methacrylate) Polymers

Supriya Porwalª; Ashutosh Dwivediª; Meet Kamal^b

^a Department of Physics, Maharana Pratap Engineering College, Kanpur, India ^b Department of Chemistry, Christ Church College, Kanpur, India

To cite this Article Porwal, Supriya, Dwivedi, Ashutosh and Kamal, Meet(2009) ¹³C NMR and Raman Studies of Fullerene-Based Poly(Methyl Methacrylate) Polymers', International Journal of Polymer Analysis and Characterization, 14: 6, 551 - 562

To link to this Article: DOI: 10.1080/10236660903086185 URL: http://dx.doi.org/10.1080/10236660903086185

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

International Journal of Polymer Anal. Charact., 14: 551–562, 2009 Copyright © Taylor & Francis Group, LLC ISSN 1023-666X print DOI: 10.1080/10236660903086185

¹³C NMR and Raman Studies of Fullerene-Based Poly(Methyl Methacrylate) Polymers

Supriya Porwal,¹ Ashutosh Dwivedi,¹ and Meet Kamal²

¹Department of Physics, Maharana Pratap Engineering College, Kanpur, India ²Department of Chemistry, Christ Church College, Kanpur, India

Abstract: ¹³C NMR and Raman studies of a series of polymeric samples of fullerene-grafted poly(methyl methacrylate), which were prepared by systematic variation of concentration of fullerene and methyl methacrylate, are described. ¹³C NMR spectral analysis of the polymeric samples showed a peak for fullerene at 138 δ ppm and for poly(methyl methacrylate) between 169 and 177 δ ppm, and Raman spectral analysis of the polymeric samples gave the Raman shift for fullerene between 1400 and 1600 cm⁻¹ and poly(methyl methacrylate) at 2800 cm⁻¹. The T_g value, obtained from DSC results, showed a high glass transition temperature at 305.7°C, revealing the presence of fullerene in the polymeric matrix.

Keywords: Coupling constant; Fullerene; Glass transition temperature; Methyl methacrylate; ¹³C NMR; Raman spectroscopy

Submitted 21 April 2009; accepted 3 June 2009.

The authors are grateful to the Director, Maharana Pratap Engineering College, and late Prof. A. K. Srivastava, Harcourt Butler Technological Institute, Kanpur, for providing necessary facilities and help when needed. We are also grateful to Advanced Centre of Material Sciences, IIT Kanpur, for providing Raman and NMR facilities.

Correspondence: Ashutosh Dwivedi, Department of Physics, Maharana Pratap Engineering College, Kanpur, India. E-mail: ashu_dwi@yahoo.com

INTRODUCTION

A polymer is a material whose molecules contain a very large number of atoms linked by covalent bonds that make them macromolecules. The field of synthetic polymers or plastics is currently one of the fastest growing material industries. In addition to these synthetic materials, different types of carbon materials called fullerenes have recently been introduced.^[1] Fullerene, in its most stable form C_{60} , exhibits a variety of outstanding electronic, conducting, and magnetic properties^[2] and acts as photo sensitizer and photorefractive material.^[3] The science of fullerenes continues to be an exciting field, generating many articles with promising new applications every year. A search of the literature reveals that a lot of work has been carried out on synthesis, characterization of fullerenes, and doped fullerenes with alkali metals like potassium and rubidium ternary compounds,^[4,5] poly fulleride ions in $AC_{60}^{[6]}$ (A is potassium, rubidium, or cesium), and fullerene doped with organic cations like morpholine and acridizine.^[7] The literature survey also reveals that ¹³C NMR spectroscopic studies of fullerene and polyethylene oxide complexes,^[8] magnetic resonance of solid fullerene and their compounds with alkali metals,^[9] and superconductivity and nuclear magnetic resonance investigation of KTl_{15} -doped C_{60} have been carried out in past years. Synthesis and cationic photopolymerization of a C_{60} derivative bearing a 2,4,6-tris(epoxynonyloxy)phenyl moiety (FB90x)^[11] has been carried out. In addition, the synthesis and determination of properties of poly (methyl methacrylate)/clay nanocomposites, prepared via in situ polymerization with nickel acetyl acetonate $[Ni(acac)_2]$ catalyst in combination with methylalumoxane,^[12] have also been carried out. The literature also reveals Raman spectroscopic studies on pressure-induced polymerization of C₆₀ at high temperature,^[13] rotation vibrational dynamics of C₆₀,^[14] and the vibrational Raman spectra of C_{60} .^[15] High-temperature study of solid C_{60} ,

Sample name	Fullerene (mol/L)	Poly(methyl methacrylate) (mol/L)
A	1.77×10^{-5}	4.19
В	1.38×10^{-4}	3.77
С	$1.89 imes 10^{-4}$	3.42
D	2.31×10^{-4}	3.14
Е	1.26×10^{-4}	4.27
F	1.73×10^{-4}	2.35

Table I. Variation of fullerene with poly(methyl methacrylate)

2011
January
21
15:29
At:
Downloaded

Table II.	NIMIN OF D	מווז זמווכוכווכ מווח זמ	not nasen hoi	Automat memory	1 yiaic)		
		Poly (methyl	Equatorial				Ca Poly (methyl
Sample	C_{60}	methacrylate)	position of	CDCI ₃	α -CH ₃	OCH_3	methacrylate)
name	$(\text{mdd}\varrho)$	$(\text{mdd}\varphi)$	C-atoms	$(\text{mdd}\varphi)$	$(\text{undd} \varphi)$	$(\text{undd}\varphi)$	$(mdd \delta)$
Plain	138	I	129, 128	77, 77.2,	21.6	I	1
fullerene				77.5			
A	136	169.2, 169.4,	I	77	21.0	51	I
		169.6, 169.8					
В	143	169	127, 129	76.8, 77.1,	21.6	53	45
				77.3			
C	134	177.0, 177.9,	128, 129	76.8, 77.1	18.8	51	44.6, 44.9
		178.2					
D	139	170	128, 129	76.8, 77.1	19	61	I
Е	138	178	128, 129	76, 77	21.3	I	40.2, 40.3
Ĺ	138	172	128, 129	76, 77	27.1	62.01	I

Table II. ¹³C NMR of plain fullerene and fullerene-based poly(methyl methacrylate)

pristine and polymerized, was performed by Raman spectroscopy up to 843 K.^[16] These data could be used as a reference for in situ studies of C_{60} chemical transformation occurring at high temperature. Selective multi-addition of organocopper reagents to fullerenes^[17] were also carried out. To achieve selective multi-addition of organometallic reagents to fullerenes, one needs to control not only the number of organic groups to be added but also the regioselectivity of the addition, and the yield on each step must be very high to achieve high overall yield of the multiple reaction. The literature survey shows sufficient study on radical polymerization of vinyl monomers in the form of homopolymer, copolymer, and terpolymer.^[18–20] However, spectroscopic studies on fullerene-grafted vinyl monomers are still scarce. The present article therefore highlights ¹³C NMR and Raman spectroscopic studies of fullerene-grafted poly(methyl methacrylate) polymers.

Figure 1. ¹³C NMR of plain fullerene.

Figure 2. ¹³C NMR of sample A.

EXPERIMENTAL SECTION

Purified solvents were used as received. Benzoylperoxide (BPO) was recrystallized in chloroform. Fullerene (Alfa Aesar, 99.9% C_{60}) was used as received and was dissolved in toluene as required. A series of samples (A to F) of fullerene-grafted poly(methyl methacrylate) were synthesized by systematic variation of fullerene (1.77×10^{-5} – 1.73×10^{-4} mol/L) and methyl methacrylate (4.19–2.35 mol/L) concentration using benzoylperoxide as initiator and toluene as solvent for 1 h at 90°C under nitrogen. The polymer was precipitated in acidified methanol and vaccum dried until a constant weight was obtained. The fullerene concentration versus methyl methacrylate concentration for each synthesized sample is depicted in Table I.

Figure 3. ¹³C NMR of sample B.

CHARACTERIZATION OF POLYMERS

Spectral Analysis: ¹³C NMR Spectroscopy

¹³C nuclear magnetic resonance (NMR) spectral analysis of plain fullerene and fullerene-grafted poly(methyl methacrylate) samples (A to F) (Table II) was carried in an ECX 500-JEOL NMR spectrometer using CDCl₃ as a solvent. The peak values were studied and the coupling constant (τ) was determined.

Raman Spectroscopic Studies

Raman spectra of fullerene-based poly(methyl methacrylate) were recorded by NSOM (near-field scanning optical microscope), laser 514.7 nm.

Figure 4. ¹³C NMR of sample C.

Thermal Properties

Differential scanning calorimetry was carried out on a V2.2 Dupont calorimeter, under nitrogen atmosphere at a heating rate of 10° C/min. The sample weight was 3-5 mg.

RESULTS AND DISCUSSION

¹³C NMR spectrum for C_{60} shows a peak at 138 δ ppm, which is due to proton decoupling. Peak values corresponding to CDCl₃ were obtained between 77.0 and 77.5 δ ppm, equatorial position of carbon atoms was at 129 δ ppm, and α -CH₃ at 21.6 δ ppm (Figure 1). Further polymeric samples (A to F) were obtained by systematic variation of fullerene and poly (methyl methacrylate). These samples were studied by ¹³C NMR spectroscopy, whose spectra are given in Figures 2–7 and whose comparison is given in Table II. From the observed data, we find that there is a shift in peak values of methyl methacrylate (MMA) and plain fullerene, thereby showing incorporation of the polymer formed on the

Figure 5. ¹³C NMR of sample D.

fullerene surface, which increases the solubility and processability of the polymer network.

Raman spectroscopy yields important information about the structure of macromolecules. We are able to determine the orientation and conformation of polymers and the density of vibrational states by using this technique. A strong band of fullerene and poly MMA interaction is manifested as the pronounced shift of fullerene at 1500 cm^{-1} , which is usually obtained at about $1466-1470 \text{ cm}^{-1}$, and that of the peaks at about $1420-1430 \text{ cm}^{-1}$, which are the H_g modes (Figure 8). A strong band between 2900 and 3000 cm^{-1} shows the presence of –CH stretching groups. There is no band at $1900-2400 \text{ cm}^{-1}$, which indicates that the double bond of MMA is not present, i.e., MMA has been polymerized. Also, a band at 1725 cm^{-1} shows the presence of carbonyl group of poly MMA. Differential scanning calorimetry (DSC) result shows a glass transition temperature (T_g) at 305° C of the polymeric sample (Figure 9),

558

Figure 6. ¹³C NMR of sample E.

whereas the T_g value reported for poly MMA is $130^{\circ}-140^{\circ}C^{[25]}$ and that of fullerene is between 200° and 250°C. The high value of T_g shows that the poly MMA has been incorporated on the C_{60} framework.

CONCLUSION

To summarize, we have given a detailed ¹³C NMR investigation of fullerene-grafted poly(methyl methacrylate) showing peak values between 134 and 143 δ ppm, as compared to ¹³C NMR spectrum studies of plain fullerene at 138 δ ppm, which was agreement with the results reported earlier. A band of fullerene and poly(methyl methacrylate) interaction is observed at 1500 cm⁻¹, which is usually obtained at about 1466–1470 cm⁻¹. Also, the high value of T_g obtained at 305°C shows the interaction of poly(methyl methacrylate) chains on the fullerene surface.

Figure 8. Raman spectra of sample F.

560

Figure 9. DSC curve of sample E.

REFERENCES

- Kroto, H. (1992). Introduction [to Special Issue on Fullerenes]. Carbon 30 (8), 1139–1141.
- [2] Zheng, L. A., E. V. Barrera, and R. D. Shull. (2002). Formation and stabilization of nanosize grains in ferromagnetic thin films by dispersed C₆₀. *J. Appl. Phys.* 92, 523.
- [3] Martin-Gomis, L., J. Ortiz, F. Fernández-Lazaro, A. Sastre-Santos, B. Elliot, and L. Echegoyen. (2006). Synthesis and characterization of new trinitroflourene-fullerene dyads as photosensitizers in photorefractive polymer materials. Redox behavior and charge transfer properties. *Tetrahedron* 62 (9), 2102–2109.
- [4] Alloul, H., K. Holczer, Y. Yoshinari, and O. Klein. (1994). ³⁹K NMR study of phase transitions and electronic properties in K_3C_{60} . *Physica C* 235, 2509–2510.
- [5] Alloul, H., K. Halczer, Y. Yoshinari, and L. Forro. (1994). NMR study of RbC₆₀. *Physica C* 235, 2479–2480.
- [6] Pekker, S., G. Oszlanyi, and G. Faigel. (1998). Structure and stability of covalently bonded polyfulleride ions in A_xC_{60} salts. *Chem. Phys. Lett.* **282**, 435–441.
- [7] Zuzok, R., P. Wzietek, M. Fourmigue, P. Batail, P. Auban-Senzier, S. Roth, and D. Jerome. (1993). C₆₀ doped with organic cations: Magnetic resonance measurements. *Synth. Met.* 56 (2–3), 3235–3239.

- [8] Li, M., and Q. Chen. (2003). Interactions between fullerene (C₆₀) and poly(ethylene oxide) in their complexes as revealed by high-resolution solidstate ¹³C NMR spectroscopy. *Polymer* 44 (9), 2793–2798.
- [9] Mizoguchi, K. (1993). Magnetic resonance of fullerene solids and their compounds. J. Phys. Chem. Solids 54 (12), 1693–1698.
- [10] Krous, M., J. Freyteg, S. Gartner, H. M. Vieth, W. Kratschmer, and K. Luders. (1991). Superconductivity and NMR investigations of KTI_{1.5}doped C₆₀. Z. Phys. B Condens. Matter 85, 1.
- [11] Lintinen, K., A. Efimov, S. Hietala, S. Nagao, P. Jalkanen, N. Tkachenko, and H. Lemmetyinen. (2008). Cationic photopolymerization of liquid fullerene derivative under visible light. *Polym. Sci. Part A Polym. Chem.* 46 (15), 5194.
- [12] Cui, L., N. H. Tarte, and S. I. Woo. (2008). Synthesis and properties of poly(methyl methacrylate)/clay nanocomposites prepared via in situ polymerization with Ni(acac)₂ catalyst. J. Appl. Polym. Sci. 110 (2), 784–790.
- [13] Talyzin, A. V., L. S. Dubrovinsky, T. Le Bihan, and U. Jansson. (2002). Pressure-induced polymerization of C₆₀ at high temperatures: An in situ Raman study. *Phys. Rev. B* 65, 245413.
- [14] Rajailov, P. M., V. G. Hadjiev, A. R. Goni, and C. Thomsen. (1999).
 Rotation-vibrational dynamics of solid C₆₀: A Raman study. *Phys. Rev. B* 60, 13351.
- [15] Dennis, T. J., J. P. Hare, H. W. Kroto, R. Taylor, D. R. M. Walton, and P. J. Hendra. (1991). The vibrational Raman spectra of C₆₀ and C₇₀. *Spectrochim. Acta* 47, 1289–1292.
- [16] Talyzin, A. V., A. Dzwilewski, and T. Wagberg. (2006). Temperature dependence of C₆₀ Raman spectra up to 840 K. Solid State Commun. 140, 178–181.
- [17] Matsuo, Y., and E. Nakamura. (2008). Selective multiaddition of organocopper reagents to fullerenes. *Chem. Rev.* 108 (8), 3016–3028.
- [18] Liu, Y.-L., M.-C. Tseng, and M.-H. Fangchiang. (2008). Polymerization and nanocomposites properties of multifunctional methylmethacrylate POSS. J. Polym. Sci. Part A Polym. Chem. 46 (15), 5157–5166.
- [19] Agarwal, B. P., and A. K. Srivastava. (1994). Radical terpolymerization by zinc acrylate, acrylonitrile and styrene initiated by styrene arsenic sulfide complex. *Polym. Eng. Sci.* 34 (6), 528–531.
- [20] Bhatnagar, U., and A. K. Srivastava. (1992). Metal-ylide complex initiated radical copolymerization of methylmethacrylate and styrene. J. Macromol. Sci. Pure Appl. Chem. A29 (4–5), 357–370.